Investigation of EFG Parameters at the Halogen Site in XO_3 and $XO_3^{2\ominus}$ Radicals (X = Cl, Br) in Certain Inorganic Solids*

Y. Umasasidhar, S. Ramaprabhu, and K. V. S. Rama Rao Department of Physics, Indian Institute of Technology, Madras, India

Z. Naturforsch. 41 a, 169-170 (1986); revised version received October 22, 1985

Electric field gradients at the halogen site in XO_3 and $XO_3^{2\ominus}$ radicals (X=Cl,Br), formed by the γ -irradiation of single crystals of $NaClO_3$, $KClO_3$, $KBrO_3$ and $Sr(BrO_3)_2 \cdot H_2O$ have been evaluated by MO calculations using the CNDO/2 method. The symmetry of the XO_3 radicals is assumed to be that of XO_3^{\ominus} ions which have C_3 symmetry, whereas XO_3^{\ominus} radicals are assumed to have C_s symmetry with one X-O bond distance being stretched due to the excess electron. The results are in good agreement with the experimental values deduced from published ESR studies on these single crystals.

1. Introduction

Investigations of single crystals of NaClO₃, KClO₃, KBrO₃, and Sr(BrO₃)₂·H₂O after γ -irradiation at 77 K by the ESR technique revealed the formation of XO_3 and/or $XO_3^{2\Theta}$ (X = Cl, Br) radicals, and from these studies the electric field gradient (EFG) parameters at the halogen site have been obtained [1-4]. Recently it was demonstrated that the EFG parameters, viz., the nuclear quadrupole coupling constant $e^2 \Phi_{zz} Q h^{-1}$, the asymmetry parameter η , and the orientation of Φ_{zz} with respect to the crystal axes, at the halogen site in XO_3^{\ominus} (X = Cl, Br, I) ions, and in IO₆⁵ may be well predicted from MO calculations [5-7]. Therefore, in the present work, the EFG at ³⁵Cl/⁷⁹Br due to ClO₃, ClO₃²⊖, BrO₃, and BrO₃^{2⊖} radicals in NaClO₃, KClO₃, KBrO₃, and Sr(BrO₃)₂·H₂O respectively, has been estimated using the CNDO/2 method and the results have been compared with the ESR experimental data available in the literature.

2. Field Gradient Estimation

The details of the CNDO/2 calculations can be found elsewhere [8]. The configurations of the XO₃

Reprint requests to Prof. Dr. K. V. S. Rama Rao, Department of Physics, Indian Institute of Technology, Madras-600 036, India.

and $XO_3^{2\odot}$ (X = Cl, Br) radicals have been obtained from X-ray crystal structure data of NaClO₃, KClO₃, KBrO₃, and Sr(BrO₃)₂· H₂O and with the assumptions that the symmetry of the XO₃ radicals is that of the XO₃ ions, and the symmetry of the XO₃^{\odot} radical is C_S with one X-O bond being stretched by 10% of the original bond length [3, 9, 10].

3. Results and Discussion

The values of $e^2 \Phi_{zz} Q h^{-1}$, η , and the orientation of Φ_{zz} at the halogen site in the XO₃ and XO₃²⁰ (X = Cl, Br) radicals obtained from the CNDO/2 calculations are given in Table 1 along with the experimental values.

From the temperature variation of the $^{35}\text{Cl}/^{79}\text{Br}$ NQR frequency in the chlorates and bromates from 77 K to 305 K it can be seen that the change in $e^2\Phi_{zz}\,Q\,h^{-1}$ in the temperature range is about 3 to 5 MHz [11, 12]. Therefore, a comparison of the theoretical $e^2\,\Phi_{zz}\,Q\,h^{-1}$ values with the experimental ESR results at 77 K can be done without loss of generality. In these salts, the $e^2\,\Phi_{zz}\,Q\,h^{-1}$ value obtained theoretically at the ^{79}Br site in the BrO $_3^{2\ominus}$ radical is slightly smaller than the corresponding experimental value whereas η (^{79}Br) is slightly larger than the experimental value. This may be due to the limitations of the employed calculations and the assumed structure of the BrO $_3^{2\ominus}$ radical. By the shortcomings of the calculations it seems impossible to significantly improve the agreement of $e^2\,\Phi_{zz}\,Q\,h^{-1}$ and η with the experiment values by adjusting the

0340-4811 / 86 / 0100-0169 \$ 01.30/0. – Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^{*} Presented at the VIIIth International Symposium on Nuclear Quadrupole Resonance Spectroscopy, Darmstadt, July 22-26, 1985.

Substance	Radi- cal/ion	Method	$\frac{\left e^2\Phi_{zz}Qh^{-1}\right }{\text{MHz}}$	η	Direction cosines of Φ_{zz} with respect to			Reference
					a	b	С	
NaClO ₃	ClO ₃	Experimental CNDO/2	42.00 33.78	0.00	_ -0.577	_ 0.577	0.577	[1] This paper
	ClO ₃ [⊖]	Experimental CNDO/2	59.96 44.22	$0.00 \\ 0.00$	-0.577 -0.577	0.577 0.577	0.577 0.577	[13] This paper
KClO ₃	ClO ₃ ^{2⊖}	Experimental CNDO/2	- 44.90	- 0.10	- 0.739	0.000	-0.881	[2] This paper
$KBrO_3$	BrO [⊕] ₃	Experimental CNDO/2	346.22 366.98	0.00	- 0.000	0.000	1.000	[14] This paper
	$BrO_3^{2\Theta}$	Experimental CNDO/2	682.29 419.15	0.260 0.340	- -0.504	- 1.000		[3] This paper
$Sr(BrO_3)_2 \cdot H_2O$	BrO ₃ ^{2⊖}	Experimental CNDO/2	502.74 410.62	$0.400 \\ 0.460$	0.138	-0.448	0.518	[4] This paper

Table 1. Nuclear quadrupole coupling constant $e^2 \Phi_{zz} Q h^{-1}$, asymmetry parameter η , and the direction of Φ_{zz} at the $^{35}\text{Cl}/^{79}\text{Br}$ site in XO₃ and XO₃² radicals

stretching and thus predicting the exact geometrical deformation in the $BrO_3^{2\Theta}$ radical.

The η (³⁵Cl) value of the ClO₃ radical in NaClO₃ is zero, and the orientation of Φ_{zz} is the same as that obtained for the ClO₃^{\ominus} ion. This shows that η and the orientations of the EFG axes depend only on the geometry of the radical and not on the charge distribution.

The MO calculations on XO_3^{\ominus} (X = Cl, Br) in KClO₃ and Sr(BrO₃)₂·H₂O have given EFG parameters at the halogen site close to the NQR experimental results [5]. The present calculations of $e^2 \Phi_{zz} Q h^{-1}$ and η at the $^{35}\text{Cl}/^{79}\text{Br}$ site in NaClO₃ and KBrO₃ due to XO_3^{\ominus} (X = Cl, Br) have given a fair agreement with the corresponding NQR experimental values [13, 14].

The CNDO/2 calculations on the divalent hydrated bromates $Zn(BrO_3)_2 \cdot 6H_2O$, $Cd(BrO_3)_2 \cdot 2H_2O$ and $Sr(BrO_3)_2 \cdot H_2O$ for the evaluation of the EFG at the ⁷⁹Br site due to BrO_2 radicals have reproduced the ESR experimental values reasonably well [15]. Evidently the CNDO/2 calculations are well suited for the predictions of $e^2 \Phi_{zz} Q h^{-1}$ and η at the halogen site in any polyatomic group comprising the halogen atom.

Acknowledgement

One of the authors (YUS) thanks the Department of Atomic Energy, Government of India, for the award of a fellowship.

- [1] J. R. Byberg, Chem. Phys. Lett. 23, 414 (1973).
- [2] R. S. Eachus and M. C. R. Symons, J. Chem. Soc. A 1968, 2433.
- [3] J. R. Byberg and B. S. Kirkegaard, J. Chem. Phys. 60, 2594 (1974).
- [4] D. L. Sastry and K. V. S. Rama Rao, J. Chem. Phys. 80, 667 (1984).
- [5] R. Valli, S. Ramaprabhu, and K. V. S. Rama Rao, J. Mol. Struct. 111, 317 (1983)
- [6] S. Ramaprabhu and K. V. S. Rama Rao, J. Crys. Latt. def. and amorph. Mat. 10, 229 (1984).
- [7] S. Ramaprabhu, K. V. S. Rama Rao, Al. Weiss, J. Mol. Struct. 111, 295 (1983).
- [8] J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory. McGraw Hill, New York 1970.

- [9] R. W. G. Wyckoff, Crystal Structures, Vol. 1-2, John Wiley, New York 1965.
- Wiley, New York 1965.
 [10] D. L. Sastry, M. V. Rajasekharan, and K. V. S. Rama Rao, Z. Kristallogr. 152, 333 (1980).
- [11] C. V. Rama Mohan and J. Sobhanadri, Mol. Phys. 22, 575 (1977).
- [12] S. Ramaprabhu, R. Valli, and K. V. S. Rama Rao, Pramana 23, 141 (1984).
- [13] H. Zeldes and R. Livingston, J. Chem. Phys. 26, 1102
- [14] S. L. Segal and R. G. Barnes, Catalog of NQ Interactions and Resonance Frequencies in Solids. USAEC Rept., IS-520, Part I (1962).
- [15] S. Ramaprabhu, K. V. S. Rama Rao, and M. S. Gopinathan, J. Mol. Struct., in press (1985).